The Evolution of Sex: Origins

Lukas Schärer
Evolutionary Biology
Zoological Institute
University of Basel

Summary

- what is sexual reproduction?
- historical sequence
 - mitosis
 - bacterial recombination
 - syngamy
 - meiosis
 - mating types
 - anisogamy
What is sexual reproduction?

Chlamydomonas life cycle
Historical sequence

- sexual reproduction involves many different phenomena
- the historical sequence probably is
 - asexual reproduction (binary cell division, mitosis)
 - limited recombination in bacteria
 - fusion between genetically dissimilar cells (syngamy)
 - meiosis (with segregation and crossing over)
 - mating types
 - anisogamy and gender
- when we think of sexual reproduction we usually think of organisms that went through the complete sequence
 - but this does not help us to understand the origin of sexual reproduction

Mitosis

- asexual reproduction (binary cell division, mitosis)
 - cell division in prokaryotes
Mitosis

- asexual reproduction (binary cell division, mitosis)
 - mitosis in diploid eukaryotes

Bacterial recombination

- limited recombination in bacteria
 - of parasitic origin?
Syngamy

- fusion between genetically dissimilar cells

Meiosis

from Stearns & Hoekstra 2005
Meiosis

- segregation and crossing-over

![Diagram of Meiosis](image)

from Stearns & Hoekstra 2005

Meiosis

- gene conversion is involved in DNA repair and it uses cellular mechanisms similar to crossing-over
- recombination could have originated from DNA repair mechanisms

![Diagram of Gene Conversion and Crossover](image)
Mating types

- mating types

from http://biodidac.bio.uottawa.ca

Mating types

- why two mating types?

from Maynard Smith and Szathmary 1995
Anisogamy

• the origin of ‘males’ and ‘females’
 • males make the small gametes and females make the big gametes
• the origin of the twofold cost of sex
 • the ‘main’ cost of sexual reproduction only appeared after evolution of anisogamy, so sex initially may not have needed a big advantage

Summary

• what is sexual reproduction?
• historical sequence
 • mitosis
 • bacterial recombination
 • syngamy
 • meiosis
 • mating types
 • anisogamy
Reading

- read until page 162 and skip the crossed-out boxes and figures (the crosses are only visible before printing)
- concentrate on the mechanistic aspects for the moment, the costs and benefits of sex will be discussed later

9 The Origin of Sex and the Nature of Species

9.1 Introduction
9.2 Cellular mechanisms of the haploid-diploid cycle
9.3 Ancient haploid-diploid cycles
 Why a haploid-diploid cycle without syngamy?
 Why did syngamy replace reduplication?
 Box 9A: Do haploids grow faster?
 Why crossing-over?
 Why a two-step method?
 Box 9B: Some alternatives to a two-step method
 Conclusions
9.4 Matting types and the origin of sexuagamy
9.5 Sex and the nature of species
 Clones
 Observations
 Conclusions